Part Number Hot Search : 
5KP28 T117AD I74FCT AD5684R 74HC404 SB3100 BSYP63 MAX651
Product Description
Full Text Search
 

To Download TLC225X-Q1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? sgls188a ? october 2003 ? revised february 2004 1 post office box 655303 ? dallas, texas 75265  qualification in accordance with aec-q100 ?  qualified for automotive applications  customer-specific configuration control can be supported along with major-change approval  esd protection exceeds 2000 v per mil-std-883, method 3015; exceeds 150 v (tlc2252/52a) and 100 v (tlc2254/54a) using machine model (c = 200 pf, r = 0)  output swing includes both supply rails  low noise . . . 19 nv/ hz typ at f = 1 khz ? contact factory for details. q100 qualification data available on request.  low input bias curren t...1 pa typ  fully specified for both single-supply and split-supply operation  very low power ...35 a per channel typ  common-mode input voltage range includes negative rail  low input offset voltage 850 v max at t a = 25 c (tlc225xa)  macromodel included  performance upgrades for the ts27l2/l4 and tlc27l2/l4 description the tlc2252 and tlc2254 are dual and quadruple operational amplifiers from texas instruments. both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. the tlc225x family consumes only 35 a of supply current per channel. this micropower operation makes them good choices for battery-powered applications. the noise performance has been dramatically improved over previous generations of cmos amplifiers. looking at figure 1, the tlc225x has a noise level of 19 nv/ hz at 1khz; four times lower than competitive micropower solutions. the tlc225x amplifiers, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. because of the micropower dissipation levels, these devices work well in hand-held monitoring and remote-sensing applications. in addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (adcs). for precision applications, the tlc225xa family is available and has a maximum input offset voltage of 850 v. this family is fully characterized at 5 v and 5 v. copyright ? 2003 ? 2004 texas instruments incorporated please be aware that an important notice concerning avail ability, standard warranty, and use in critical applications of texas instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. advanced lincmos is a trademark of texas instruments. figure 1 vn ? equivalent input noise voltage ? nv//hz f ? frequency ? hz equivalent input noise voltage vs frequency nv/ hz v n 40 20 10 0 60 30 50 10 1 10 2 10 3 10 4 v dd = 5 v r s = 20 ? t a = 25 c
? sgls188a ? october 2003 ? revised february 2004 2 post office box 655303 ? dallas, texas 75265 description (continued) the tlc2252/4 also makes great upgrades to the tlc27l2/l4 or ts27l2/l4 in standard designs. they offer increased output dynamic range, lower noise voltage, and lower input offset voltage. this enhanced feature set allows them to be used in a wider range of applications. for applications that require higher output drive and wider input voltage ranges, see the tlv2432 and tlv2442 devices. if the design requires single amplifiers, please see the tl v2211/21/31 family. these devices are single rail-to-rail operational amplifiers in the sot-23 package. their small size and low power consumption, make them ideal for high density, battery-powered equipment. ordering information t a v io max at 25 c package ? orderable part number top-side marking 850 v soic (d) tape and reel tlc2252aqdrq1 2252aq 850 v tssop (pw) tape and reel tlc2252aqpwrq1 2252aq 1550 v soic (d) tape and reel tlc2252qdrq1 2252q1 ?40 c to 125 c 1550 v tssop (pw) tape and reel tlc2252qpwrq1 2252q1 ?40 c to 125 c 850 v soic (d) tape and reel tlc2254aqdrq1 tlc2254aq1 850 v tssop (pw) tape and reel tlc2254aqpwrq1 2254aq 1550 v soic (d) tape and reel tlc2254qdrq1 tlc2254q1 1550 v tssop (pw) tape and reel tlc2254qpwrq1 2254q1 ? package drawings, standard packing quantities, thermal data, symbolization, and pcb design guidelines are available at www.ti.com/sc/package. tlc2252, tlc2252a d or pw package (top view) 1 2 3 4 8 7 6 5 1out 1in ? 1in + v dd ? /gnd v dd + 2out 2in ? 2in + 1 2 3 4 5 6 7 14 13 12 11 10 9 8 1out 1in ? 1in + v dd + 2in + 2in ? 2out 4out 4in ? 4in + v dd ? / gnd 3in + 3in ? 3out tlc2254, tlc2254a d or pw package (top view)
? sgls188a ? october 2003 ? revised february 2004 3 post office box 655303 ? dallas, texas 75265 equivalent schematic (each amplifier) q3 q6 q9 q12 q14 q16 q2 q5 q7 q8 q10 q11 d1 q17 q15 q13 q4 q1 r5 c1 v dd + in + in ? r3 r4 r1 r2 out v dd ?/ gnd r6 actual device component count ? component tlc2252 tlc2254 transistors 38 76 resistors 30 56 diodes 9 18 capacitors 3 6 ? includes both amplifiers and all esd, bias, and trim circuitry
? sgls188a ? october 2003 ? revised february 2004 4 post office box 655303 ? dallas, texas 75265 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ? supply voltage, v dd + (see note 1) 8 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . supply voltage, v dd ? (see note 1) ?8 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . differential input voltage, v id (see note 2) 16 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input voltage, v i (any input, see note 1) 8 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input current, i i (each input) 5 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output current, i o 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . total current into v dd + 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . total current out of v dd ? 50 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . duration of short-circuit current at (or below) 25 c (see note 3) unlimited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . continuous total dissipation see dissipation rating table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . operating free-air temperature range, t a : q suffix ?40 c to 125 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . storage temperature range, t stg ?65 c to 150 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress ratings only, a nd functional operation of the device at these or any other conditions beyond those indicated under ?recommended operating conditi ons? is not implied. exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. notes: 1. all voltage values, except differential voltages, are with respect to the midpoint between v dd+ and v dd ? . 2. differential voltages are at in+ with respect to in ?. excessive current flows when input is brought below v dd ? ? 0.3 v. 3. the output may be shorted to either supply. temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. dissipation rating table package t a 25 c derating factor t a = 70 c t a = 85 c t a = 125 c package t a 25 c power rating derating factor above t a = 25 c t a = 70 c power rating t a = 85 c power rating t a = 125 c power rating d?8 724 mw 5.8 mw/ c 464 mw 377 mw 144 mw d?14 950 mw 7.6 mw/ c 608 mw 450 mw 190 mw pw?8 525 mw 4.2 mw/ c 336 mw 273 mw 105 mw pw?14 700 mw 5.6 mw/ c 448 mw 364 mw 140 mw recommended operating conditions min max unit supply voltage, v dd 2.2 8 v input voltage range, v i v dd ? v dd + ? 1.5 v common-mode input voltage, v ic v dd ? v dd + ? 1.5 v operating free-air temperature, t a ?40 125 c ? referenced to 2.5 v
? sgls188a ? october 2003 ? revised february 2004 5 post office box 655303 ? dallas, texas 75265 electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlc2252-q1 tlc2252a-q1 unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient of input offset voltage 25 c to 125 c 0.5 0.5 v/ c input offset voltage long-term drift (see note 4) v dd = 2.5 v, v o = 0, v ic = 0, r s = 50 ? 25 c 0.003 0.003 v/mo i io input offset current 25 c 0.5 60 0.5 60 pa i io input offset current full range 1000 1000 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current full range 1000 1000 pa v icr common-mode input r s = 50 ? | v io | 5 mv 25 c 0 to 4 ?0.3 to 4.2 0 to 4 ?0.3 to 4.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv full range 0 to 3.5 0 to 3.5 v i oh = ? 20 a 25 c 4.98 4.98 v oh high-level output i oh = ? 75 a 25 c 4.9 4.94 4.9 4.94 v v oh high-level output voltage i oh = ? 75 a full range 4.8 4.8 v voltage i oh = ? 150 a 25 c 4.8 4.88 4.8 4.88 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 low-level output v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v v ol voltage v ic = 2.5 v, i ol = 4  a 25 c 0.8 1 0.7 1 v v ic = 2.5 v, i ol = 4  a full range 1.2 1.2 large-signal differential v ic = 2.5 v, r l = 100 k ? ? 25 c 100 350 100 350 a vd large-signal differentia l voltage amplification v ic = 2.5 v, v o = 1 v to 4 v r l = 100 k ? ? full range 10 10 v/mv a vd voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 1700 1700 v/mv r id differential input resistance 25 c 10 12 10 12 ? r ic common-mode input resistance 25 c 10 12 10 12 ? c ic common-mode input capacitance f = 10 khz, f = 10 khz, 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 200 200 ? cmrr common-mode v ic = 0 to 2.7 v, v o = 2.5 v, 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, r s = 50 ? v o = 2.5 v, full range 70 70 db k svr supply-voltage rejection ratio v dd = 4.4 v to 16 v, 25 c 80 95 80 95 db k svr rejection ratio ( ? v dd / ? v io ) v dd = 4.4 v to 16 v, v ic = v dd /2, no load full range 80 80 db i dd supply current v o = 2.5 v, no load 25 c 70 125 70 125 a i dd supply current v o = 2.5 v, no load full range 150 150 a ? full range is ?40 c to 125 c for q suffix. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? sgls188a ? october 2003 ? revised february 2004 6 post office box 655303 ? dallas, texas 75265 operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlc2252-q1 tlc2252a-q1 unit parameter test conditions t a ? min typ max min typ max unit slew rate at unity v o = 0.5 v to 3.5 v, 25 c 0.07 0.12 0.07 0.12 sr slew rate at unity gain v o = 0.5 v to 3.5 v, r l = 100 k ? ? ,c l = 100 pf ? full range 0.05 0.05 v/ s v n equivalent input f = 10 hz 25 c 36 36 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v, f = 10 khz, a v = 1 25 c 0.2% 0.2% thd + n distortion plus noise o f = 10 khz, r l = 50 k ? ? a v = 10 25 c 1% 1% gain-bandwidth product f = 50 khz, r l = 50 k ? ? , c l = 100 pf ? 25 c 0.2 0.2 mhz b om maximum output- swing bandwidth v o(pp) = 2 v, a v = 1, r l = 50 k ? ? , c l = 100 pf ? 25 c 30 30 khz m phase margin at unity gain r l = 50 k ? ? ,c l = 100 pf ? 25 c 63 63 gain margin r l = 50 k ? ? ,c l = 100 pf ? 25 c 15 15 db ? full range is ?40 c to 125 c for q suffix. ? referenced to 2.5 v
? sgls188a ? october 2003 ? revised february 2004 7 post office box 655303 ? dallas, texas 75265 electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlc2252-q1 tlc2252a-q1 unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v vio temperature coefficient of input offset voltage 25 c to 125 c 0.5 0.5 v/ c input offset voltage long- term drift (see note 4) v ic = 0, v o = 0, r s = 50 ? 25 c 0.003 0.003 v/mo i io input offset current r s = 50 ? c 0.5 60 0.5 60 pa i io input offset current full range 1000 1000 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current full range 1000 1000 pa v icr common-mode input r s = 50 ?| v io | 5 mv 25 c ?5 to 4 ?5.3 to 4.2 ?5 to 4 ?5.3 to 4.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv full range ?5 to 3.5 ?5 to 3.5 v i o = ? 20 a 25 c 4.98 4.98 v om + maximum positive peak i o = ? 100 a 25 c 4.9 4.93 4.9 4.93 v v om + maximum positive peak output voltage i o = ? 100 a full range 4.7 4.7 v output voltage i o = ? 200 a 25 c 4.8 4.86 4.8 4.86 v ic = 0, i o = 50 a 25 c ?4.99 ?4.99 maximum negative v ic = 0, i o = 500 a 25 c ?4.85 ?4.91 ?4.85 ?4.91 v om ? maximum negative peak output voltage v ic = 0, i o = 500 a full range ?4.85 ?4.85 v v om ? peak output voltage v ic = 0, i o = 4  a 25 c ?4 ?4.3 ?4 ?4.3 v v ic = 0, i o = 4  a full range ?3.8 ?3.8 large-signal differential r l = 100 k ? c 40 150 40 150 a vd large-signal differential voltage amplification v o = 4 v r l = 100 k ? full range 10 10 v/mv a vd voltage amplification v o = 4 v r l = 1 m ? 25 c 3000 3000 v/mv r id differential input resistance 25 c 10 12 10 12 ? r ic common-mode input resistance 25 c 10 12 10 12 ? c ic common-mode input capacitance f = 10 khz, p package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 190 190 ? cmrr common-mode v ic = ? 5 v to 2.7 v, 25 c 75 88 75 88 db cmrr common-mode rejection ratio v ic = ? 5 v to 2.7 v, v o = 0, r s = 50 ? full range 75 75 db k svr supply-voltage rejection v dd = 2.2 v to 8 v, 25 c 80 95 80 95 db k svr supply-voltage rejection ratio ( ? v dd / ? v io ) v dd = 2.2 v to 8 v, v ic = 0, no load full range 80 80 db i dd supply current v o = 2.5 v, no load 25 c 80 125 80 125 a i dd supply current v o = 2.5 v, no load full range 150 150 a ? full range is ?40 c to 125 c for q suffix. note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? sgls188a ? october 2003 ? revised february 2004 8 post office box 655303 ? dallas, texas 75265 operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlc2252-q1 tlc2252a-q1 unit parameter test conditions t a ? min typ max min typ max unit v o = 2 v, r l = 100 k ? , 25 c 0.07 0.12 0.07 0.12 sr slew rate at unity gain v o = 2 v, r l = 100 k ? , c l = 100 pf full range 0.05 0.05 v/ s v n equivalent input noise f = 10 hz 25 c 38 38 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent f = 0.1 hz to 1 hz 25 c 0.8 0.8 v v n(pp) peak-to-peak equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa hz thd + n total harmonic distortion v o = 2.3 v, r l = 50 k ? c 0.2% 0.2% thd + n total harmonic distortion plus noise o r l = 50 k ?, f = 10 khz a v = 10 25 c 1% 1% gain-bandwidth product f =10 khz, r l = 50 k ? , c l = 100 pf 25 c 0.21 0.21 mhz b om maximum output-swing bandwidth v o(pp) = 4.6 v, a v = 1, r l = 50 k ? , c l = 100 pf 25 c 14 14 khz m phase margin at unity gain r l = 50 k ? , c l = 100 pf 25 c 63 63 gain margin r l = 50 k ? , c l = 100 pf 25 c 15 15 db ? full range is ?40 c to 125 c for q suffix.
? sgls188a ? october 2003 ? revised february 2004 9 post office box 655303 ? dallas, texas 75265 electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlc2254-q1 tlc2254a-q1 unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v  vio temperature coefficient of input offset voltage 25 c to 125 c 0.5 0.5 v/ c input offset voltage long-term drift (see note 4) v dd = 2.5 v , v o = 0, v ic = 0, r s = 50 ? 25 c 0.003 0.003 v/mo i io input offset current 25 c 0.5 60 0.5 60 pa i io input offset current 125 c 1000 1000 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 1000 1000 pa v icr common-mode input voltage range r s = 50 ? | v io | 5 mv 25 c 0 to 4 ?0.3 to 4.2 0 to 4 ?0.3 to 4.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv full range 0 to 3.5 0 to 3.5 v i oh = ? 20 a 25 c 4.98 4.98 v oh high-level output voltage i oh = ? 75 a 25 c 4.9 4.94 4.9 4.94 v v oh high-level output voltage i oh = ? 75 a full range 4.8 4.8 v voltage i oh = ? 150 a 25 c 4.8 4.88 4.8 4.88 v ic = 2.5 v, i ol = 50 a 25 c 0.01 0.01 low-level output v ic = 2.5 v, i ol = 500 a 25 c 0.09 0.15 0.09 0.15 v ol low-level output voltage v ic = 2.5 v, i ol = 500 a full range 0.15 0.15 v v ol voltage v ic = 2.5 v, i ol = 4  a 25 c 0.8 1 0.7 1 v v ic = 2.5 v, i ol = 4  a full range 1.2 1.2 large-signal v ic = 2.5 v, r l = 100 k ? ? 25 c 100 350 100 350 a vd large-signal differential voltage amplification v ic = 2.5 v, v o = 1 v to 4 v r l = 100 k ? ? full range 10 10 v/mv a vd differential voltage amplification v o = 1 v to 4 v r l = 1 m ? ? 25 c 1700 1700 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 200 200 ? cmrr common-mode rejection ratio v ic = 0 to 2.7 v, v o = 2.5 v, r = 50 25 c 70 83 70 83 db cmrr common-mode rejection ratio v ic = 0 to 2.7 v, v o = 2.5 v, r s = 50 ? full range 70 70 db k svr supply-voltage rejection ratio v dd = 4.4 v to 16 v, v = v /2, no load 25 c 80 95 80 95 db k svr rejection ratio ( ? v dd / ? v io ) v dd = 4.4 v to 16 v, v ic = v dd /2, no load full range 80 80 db i dd supply current (four amplifiers) v o = 2.5 v, no load 25 c 140 250 140 250 a i dd supply current (four amplifiers) v o = 2.5 v, no load full range 300 300 a ? full range is ?40 c to 125 c for q suffix. ? referenced to 2.5 v note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? sgls188a ? october 2003 ? revised february 2004 10 post office box 655303 ? dallas, texas 75265 operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlc2254-q1 tlc2254a-q1 unit parameter test conditions t a ? min typ max min typ max unit slew rate at unity v o = 0.5 v to 3.5 v, ? 25 c 0.07 0.12 0.07 0.12 sr slew rate at unity gain v o = 0.5 v to 3.5 v, r l = 100 k ? ? , c l = 100 pf ? full range 0.05 0.05 v/ s v n equivalent input f = 10 hz 25 c 36 36 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input f = 0.1 hz to 1 hz 25 c 0.7 0.7 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic distortion plus v o = 0.5 v to 2.5 v, f = 20 khz, a v = 1 25 c 0.2% 0.2% thd + n distortion plus noise o f = 20 khz, r l = 50 k ? ? a v = 10 25 c 1% 1% gain-bandwidth product f = 50 khz, c l = 100 pf ? r l = 50 k ? ? , 25 c 0.2 0.2 mhz b om maximum output- swing bandwidth v o(pp) = 2 v, r l = 50 k ? ? , a v = 1, c l = 100 pf ? 25 c 30 30 khz m phase margin at unity gain r l = 50 k ? ? , c l = 100 pf ? 25 c 63 63 gain margin r l = 50 k ? ? , c l = 100 pf ? 25 c 15 15 db ? full range is ?40 c to 125 c for q suffix. ? referenced to 2.5 v
? sgls188a ? october 2003 ? revised february 2004 11 post office box 655303 ? dallas, texas 75265 electrical characteristics at specified free-air temperature, v dd = 5 v (unless otherwise noted) parameter test conditions t a ? tlc2254-q1 tlc2254a-q1 unit parameter test conditions t a ? min typ max min typ max unit v io input offset voltage 25 c 200 1500 200 850 v v io input offset voltage full range 1750 1000 v vio temperature coefficient of input offset voltage 25 c to 125 c 0.5 0.5 v/ c input offset voltage long-term drift (see note 4) v ic = 0, r s = 50 ? v o = 0, 25 c 0.003 0.003 v/mo i io input offset current r s = 50 ? c 0.5 60 0.5 60 pa i io input offset current 125 c 1000 1000 pa i ib input bias current 25 c 1 60 1 60 pa i ib input bias current 125 c 1000 1000 pa v icr common-mode input r s = 50 ? | v io | 5 mv 25 c ?5 to 4 ?5.3 to 4.2 ?5 to 4 ?5.3 to 4.2 v v icr common-mode input voltage range r s = 50 ?, | v io | 5 mv full range ?5 to 3.5 ?5 to 3.5 v i o = ? 20 a 25 c 4.98 4.98 v om + maximum positive peak i o = ? 100 a 25 c 4.9 4.93 4.9 4.93 v v om + maximum positive peak output voltage i o = ? 100 a full range 4.7 4.7 v output voltage i o = ? 200 a 25 c 4.8 4.86 4.8 4.86 v ic = 0, i o = 50 a 25 c ?4.99 ?4.99 maximum negative peak v ic = 0, i o = 500 a 25 c ?4.85 ?4.91 ?4.85 ?4.91 v om ? maximum negative peak output voltage v ic = 0, i o = 500 a full range ?4.85 ?4.85 v v om ? output voltage v ic = 0, i o = 4  a 25 c ?4 ?4.3 ?4 ?4.3 v v ic = 0, i o = 4  a full range ?3.8 ?3.8 large-signal differential r l = 100 k ? c 40 150 40 150 a vd large-signal differential voltage amplification v o = 4 v r l = 100 k ? full range 10 10 v/mv a vd voltage amplification v o = 4 v r l = 1 m ? 25 c 3000 3000 v/mv r i(d) differential input resistance 25 c 10 12 10 12 ? r i(c) common-mode input resistance 25 c 10 12 10 12 ? c i(c) common-mode input capacitance f = 10 khz, n package 25 c 8 8 pf z o closed-loop output impedance f = 25 khz, a v = 10 25 c 190 190 ? cmrr common-mode rejection v ic = ? 5 v to 2.7 v, 25 c 75 88 75 88 db cmrr common-mode rejection ratio v ic = ? 5 v to 2.7 v, v o = 0, r s = 50 ? full range 75 75 db k svr supply-voltage rejection v dd =  2.2 v to  8 v, 25 c 80 95 80 95 db k svr supply-voltage rejection ratio ( ? v dd / ? v io ) v dd =  2.2 v to 8 v, v ic = v dd /2, no load full range 80 80 db i dd supply current v o = 0, no load 25 c 160 250 160 250 a i dd supply current (four amplifiers) v o = 0, no load full range 300 300 a ? full range is ?40 c to 125 c for q suffix. note 4: typical values are based on the input offset voltage shift observed through 500 hours of operating life test at t a = 150 c extrapolated to t a = 25 c using the arrhenius equation and assuming an activation energy of 0.96 ev.
? sgls188a ? october 2003 ? revised february 2004 12 post office box 655303 ? dallas, texas 75265 operating characteristics at specified free-air temperature, v dd = 5 v parameter test conditions t a ? tlc2254-q1 tlc2254a-q1 unit parameter test conditions t a ? min typ max min typ max unit v o = 2 v, r l = 100 k ? , 25 c 0.07 0.12 0.07 0.12 sr slew rate at unity gain v o = 2 v, c l = 100 pf r l = 100 k ? , full range 0.05 0.05 v/ s v n equivalent input noise f = 10 hz 25 c 38 38 nv/ hz v n equivalent input noise voltage f = 1 khz 25 c 19 19 nv/ hz v n(pp) peak-to-peak equivalent input noise f = 0.1 hz to 1 hz 25 c 0.8 0.8 v v n(pp) equivalent input noise voltage f = 0.1 hz to 10 hz 25 c 1.1 1.1 v i n equivalent input noise current 25 c 0.6 0.6 fa / hz thd + n total harmonic v o = 2.3 v, r l = 50 k ? c 0.2% 0.2% thd + n total harmonic distortion plus noise o r l = 50 k ?, f = 20 khz a v = 10 25 c 1% 1% gain-bandwidth product f =10 khz, c l = 100 pf r l = 50 k ? , 25 c 0.21 0.21 mhz b om maximum output-swing bandwidth v o(pp) = 4.6 v, r l = 50 k ? , a v = 1, c l = 100 pf 25 c 14 14 khz m phase margin at unity gain r l = 50 k ? , c l = 100 pf 25 c 63 63 gain margin r l = 50 k ? , c l = 100 pf 25 c 15 15 db ? full range is ?40 c to 125 c for q suffix.
? sgls188a ? october 2003 ? revised february 2004 13 post office box 655303 ? dallas, texas 75265 typical characteristics table of graphs figure v io input offset voltage distribution 2 ? 5 v io input offset voltage distribution vs common-mode input voltage 2 ? 5 6, 7 vio input offset voltage temperature coefficient distribution 8 ? 11 i ib /i io input bias and input offset currents vs free-air temperature 12 v i input voltage range vs supply voltage 13 v i input voltage range vs supply voltage vs free-air temperature 13 14 v oh high-level output voltage vs high-level output current 15 v ol low-level output voltage vs low-level output current 16, 17 v om + maximum positive peak output voltage vs output current 18 v om ? maximum negative peak output voltage vs output current 19 v o(pp) maximum peak-to-peak output voltage vs frequency 20 i os short-circuit output current vs supply voltage 21 i os short-circuit output current vs supply voltage vs free-air temperature 21 22 v o output voltage vs differential input voltage 23, 24 differential gain vs load resistance 25 a vd large-signal differential voltage amplification vs frequency 26, 27 a vd large-signal differential voltage amplification vs frequency vs free-air temperature 26, 27 28, 29 z o output impedance vs frequency 30, 31 cmrr common-mode rejection ratio vs frequency 32 cmrr common-mode rejection ratio vs frequency vs free-air temperature 32 33 k svr supply-voltage rejection ratio vs frequency 34, 35 k svr supply-voltage rejection ratio vs frequency vs free-air temperature 34, 35 36 i dd supply current vs supply voltage 37 i dd supply current vs supply voltage vs free-air temperature 37 38 sr slew rate vs load capacitance 39 sr slew rate vs load capacitance vs free-air temperature 39 40 v o inverting large-signal pulse response 41, 42 v o voltage-follower large-signal pulse response 43, 44 v o inverting small-signal pulse response 45, 46 v o voltage-follower small-signal pulse response 47, 48 v n equivalent input noise voltage vs frequency 49, 50 noise voltage (referred to input) over a 10-second period 51 integrated noise voltage vs frequency 52 thd + n total harmonic distortion plus noise vs frequency 53 gain-bandwidth product vs free-air temperature 54 gain-bandwidth product vs free-air temperature vs supply voltage 54 55 m phase margin vs frequency 26, 27 m phase margin vs frequency vs load capacitance 26, 27 56 a m gain margin vs load capacitance 57 b 1 unity-gain bandwidth vs load capacitance 58 overestimation of phase margin vs load capacitance 59
? sgls188a ? october 2003 ? revised february 2004 14 post office box 655303 ? dallas, texas 75265 typical characteristics figure 2 percentage of amplifiers ? % distribution of tlc2252 input offset voltage v io ? input offset voltage ? mv 10 5 30 0 20 15 25 35 ?1.6 ?0.8 0 0.8 1.6 682 amplifiers from 1 wafer lots v dd = 2.5 v p package t a = 25 c figure 3 percentage of amplifiers ? % distribution of tlc2252 input offset voltage v io ? input offset voltage ? mv 10 5 30 0 20 15 25 35 ?1.6 ?0.8 0 0.8 1.6 682 amplifiers from 1 wafer lots v dd = 5 v p package t a = 25 c figure 4 percentage of amplifiers ? % distribution of tlc2254 input offset voltage v io ? input offset voltage ? mv 15 10 5 0 20 ?1.6 0 0.8 1.6 ?0.8 1020 amplifiers from 1 wafer lot v dd = 2.5 v t a = 25 c figure 5 percentage of amplifiers ? % distribution of tlc2254 input offset voltage v io ? input offset voltage ? mv 15 10 5 0 20 25 ?1.6 0 0.8 1.6 ?0.8 1020 amplifiers from 1 wafer lot v dd = 5 v t a = 25 c
? sgls188a ? october 2003 ? revised february 2004 15 post office box 655303 ? dallas, texas 75265 typical characteristics figure 6 vio ? input offset voltage ? mv input offset voltage ? vs common-mode input voltage ? t a = 25 c figure 7 vio ? input offset voltage ? mv input offset voltage vs common-mode input voltage = 5 v r s = 50 ? t a = 25 c 1 0.8 0.6 0.4 0.2 0 ?0.2 ?0.4 ?0.6 ?0.8 ?1 ?6 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 figure 8 precentage of amplifiers ? % 15 10 5 0 20 25 ?1 0 1 2 p package t a = 25 c to 125 c distribution of tlc2252 input offset voltage temperature coefficient vio ? temperature coefficient ? v/ c 62 amplifiers from 1 wafer lot v dd = 2.5 v figure 9 percentage of amplifiers ? % 15 10 5 0 20 25 ?1 0 1 2 62 amplifiers from 1 wafer lot v dd = 5 v p package t a = 25 c to 125 c distribution of tlc2252 input offset voltage temperature coefficient vio ? temperature coefficient ? v/ c ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 16 post office box 655303 ? dallas, texas 75265 typical characteristics figure 10 percentage of amplifiers ? % distribution of tlc2254 input offset voltage temperature coefficient vio ? temperature coefficient of input offset voltage ? v/ c 15 10 5 0 20 25 ?2 ?1 0 1 2 62 amplifiers from 1 wafer lot v dd = 2.5 v p package t a = 25 c to 125 c figure 11 percentage of amplifiers ? % distribution of tlc2254 input offset voltage temperature coefficient vio ? temperature coefficient of input offset voltage ? v/ c 15 10 5 0 20 25 ?2 ?1 0 1 2 62 amplifiers from 1 wafer lot v dd = 5 v p package t a = 25 c to 125 c figure 12 10 5 30 0 25 45 65 85 iib and iio ? input bias and input offset currents ? pa 20 15 25 input bias and input offset currents ? vs free-air temperature 35 105 125 i ib i io v dd = 2.5 v v ic = 0 v o = 0 r s = 50 ? t a ? free-air temperature ? c 5 mv r s = 50 ? t a = 25 c v i | v dd | ? supply voltage ? v ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices.
? sgls188a ? october 2003 ? revised february 2004 17 post office box 655303 ? dallas, texas 75265 typical characteristics figure 14 5 2 1 0 vi ? input voltage range ? v 3 4 input voltage range ? vs free-air temperature 5 ?1 ?75 ?55 ?35 ?15 25 45 65 85 105 125 v dd = 5 v c figure 15 voh ? high-level output voltage ? v high-level output voltage ?? vs high-level output current |i oh | ? high-level output current ? a c t a = 25 c t a = 125 c t a = ? 55 c figure 16 0.6 0.4 0.2 0 0123 vol ? low-level output voltage ? v 0.8 1 low-level output voltage ? vs low-level output current 1.2 45 v ic = 0 v ic = 1.25 v v ic = 2.5 v v dd = 5 v t a = 25 c c t a = 25 c t a = ? 55 c v dd = 5 v v ic = 2.5 v c ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 18 post office box 655303 ? dallas, texas 75265 typical characteristics figure 18 maximum positive peak output voltage ? vs output current i o ? output current ? a 3 2 1 0 0 200 400 4 5 600 800 t a = 125 c t a = 25 c vom + ? maximum positive peak output voltage ? v c v dd = 5 v t a = ? 55 c figure 19 01 2 vom ? ? maximum negative peak output voltage ? v maximum negative peak output voltage ? vs output current 345 6 ?3.8 ?4 ?4.2 ?4.4 ?4.6 ?4.8 ?5 v dd = 5 v v ic = 0 t a = 125 c t a = 25 c t a = ? 40 c i o ? output current ? ma c figure 20 vo(pp) ? maximum peak-to-peak output voltage ? v f ? frequency ? hz maximum peak-to-peak output voltage ? vs frequency = 5 v r l = 50 k ? t a = 25 c figure 21 ios ? short-circuit output current ? ma short-circuit output current vs supply voltage i os | v dd | ? supply voltage ? v 5 3 1 234 5 7 8 10 678 9 6 4 2 0 ?1 v id = ? 100 mv v id = 100 mv v o = 0 t a = 25 c v ic = 0 ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 19 post office box 655303 ? dallas, texas 75265 typical characteristics figure 22 ios ? short-circuit output current ? ma short-circuit output current ? vs free-air temperature t a ? free-air temperature ? c i os 11 10 9 8 7 6 5 4 3 2 1 0 ?1 ?75 ?50 ?25 0 25 50 75 100 125 v id = ? 100 mv v id = 100 mv v o = 0 v dd = 5 v figure 23 3 2 1 0 0 250 4 5 output voltage ? vs differential input voltage 500 750 1000 v id ? differential input voltage ? v ? output voltage ? v v o ?1000 ?750 ?250 ?500 v dd = 5 v r l = 50 k ? v ic = 2.5 v t a = 25 c figure 24 1 ?1 ?3 ?5 0 250 3 5 output voltage vs differential input voltage 500 750 1000 v id ? differential input voltage ? v v dd = 5 v v ic = 0 r l = 50 k ? t a = 25 c ? output voltage ? v v o ?1000 ?750 ?250 ?500 figure 25 differential gain ? v/ mv differential gain ? vs load resistance r l ? load resistance ? k ? 10 4 10 3 10 2 10 110 1 10 2 10 3 v o (pp) = 2 v t a = 25 c v dd = 5 v v dd = 5 v ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 20 post office box 655303 ? dallas, texas 75265 typical characteristics om ? phase margin m f ? frequency ? hz large-signal differential voltage amplification and phase margin ? vs frequency avd ? large-signal differential 135 90 45 0 ?45 ?90 gain v dd = 5 v r l = 50 k ? c l = 100 pf t a = 25 c phase margin figure 26 om ? phase margin m f ? frequency ? hz large-signal differential voltage amplification and phase margin vs frequency avd ? large-signal differential 135 90 45 0 ?45 ?90 gain v dd = 10 v r l = 50 k ? c l = 100 pf t a = 25 c phase margin figure 27 ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 21 post office box 655303 ? dallas, texas 75265 typical characteristics figure 28 large-signal differential voltage amplification ?? vs free-air temperature t a ? free-air temperature ? c avd ? large-signal differential ? r l = 1 m ? 10 4 10 3 10 2 ?75 10 1 figure 29 t a ? free-air temperature ? c large-signal differential voltage amplification ? vs free-air temperature avd ? large-signal differential = 5 v v ic = 0 v o = 4 v r l = 50 k ? 10 4 10 3 10 2 r l = 1 m ? ?75 10 1 figure 30 zo ? output impedance ? 0 output impedance ? vs frequency f ? frequency ? hz ? z o 10 1 0.1 1000 100 10 2 10 3 10 4 10 5 10 6 v dd = 5 v t a = 25 c a v = 100 a v = 10 a v = 1 figure 31 output impedance vs frequency f ? frequency ? hz zo ? output impedance ? 0 ? z o 10 1 0.1 1000 100 10 2 10 3 10 4 10 5 10 6 v dd = 5 v t a = 25 c a v = 100 a v = 10 a v = 1 ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 22 post office box 655303 ? dallas, texas 75265 typical characteristics figure 32 f ? frequency ? hz common-mode rejection ratio ? vs frequency cmrr ? common-mode rejection ratio ? db 80 40 20 0 100 60 10 1 10 2 10 3 10 4 10 5 16 6 v dd = 5 v v dd = 5 v figure 33 common-mode rejection ratio ?? vs free-air temperature t a ? free-air temperature ? c cmrr ? common-mode rejection ratio ? db 84 82 92 80 88 86 90 94 ?50 ?25 0 25 50 75 100 125 v dd = 5 v v dd = 5 v ?75 figure 34 f ? frequency ? hz supply-voltage rejection ratio ? vs frequency ksvr ? supply-voltage rejection ratio ? db c k svr + figure 35 ksvr ? supply-voltage rejection ratio ? db f ? frequency ? hz supply-voltage rejection ratio vs frequency = 5 v t a = 25 c ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 23 post office box 655303 ? dallas, texas 75265 typical characteristics figure 36 ksvr ? supply-voltage rejection ratio ? db supply-voltage rejection ratio ? vs free-air temperature c 100 95 90 105 110 ?50 ?25 0 25 50 75 100 125 v dd = 2.2 v to 8 v v o = 0 ?75 figure 37 idd ? supply current ? ua supply current ? vs supply voltage | v dd | ? supply voltage ? v 120 80 40 0 012345 160 200 240 678 t a = 25 c t a = 125 c v o = 0 no load t a = ? 55 c t a = ? 40 c figure 38 supply current ?? vs free-air temperature idd ? supply current ? ua t a ? free-air temperature ? c 120 80 40 0 160 200 240 ?50 ?25 0 25 50 75 100 125 v dd = 5 v v o = 0 v dd = 5 v v o = 2.5 v ?75 figure 39 sr ? slew rate ? v/us slew rate ? vs load capacitance s v/ c l ? load capacitance ? pf 0.16 0.08 0.04 0 0.2 0.12 10 1 10 2 10 3 10 4 v dd = 5 v a v = ? 1 t a = 25 c sr ? 0.18 0.14 0.1 0.06 0.02 sr + ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 24 post office box 655303 ? dallas, texas 75265 typical characteristics figure 40 slew rate ?? vs free-air temperature t a ? free-air temperature ? c sr ? slew rate ? v/us s v/ 0.12 0.08 0.04 0 0.16 0.2 ?50 ?25 0 25 50 75 100 125 sr + sr ? v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 ?75 figure 41 vo ? output voltage ? v inverting large-signal pulse response ? v o t ? time ? s 2 1 0 0 102030405060 3 4 5 70 80 90 100 v dd = 5 v r l = 50 k ? c l = 100 pf a v = ? 1 t a = 25 c figure 42 t ? time ? s vo ? output voltage ? v v o inverting large-signal pulse response 0 4 0 102030405060 2 1 3 5 70 80 90 100 v dd = 5 v r l = 50 k ? c l = 100 pf a v = ? 1 t a = 25 c ?1 ?2 ?3 ?4 ?5 figure 43 voltage-follower large-signal pulse response ? t ? time ? s vo ? output voltage ? v v o 2 1 0 0 102030405060 3 4 5 70 80 90 100 v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 t a = 25 c ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 25 post office box 655303 ? dallas, texas 75265 typical characteristics figure 44 vo ? output voltage ? v v o voltage-follower large-signal pulse response 0 4 0 102030405060 2 1 3 5 70 80 90 100 v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 t a = 25 c ?1 ?2 ?3 ?4 ?5 t ? time ? s figure 45 inverting small-signal pulse response ? vo ? output voltage ? v v o t ? time ? s 2.5 2.45 2.4 0102030 2.55 2.6 2.65 40 50 v dd = 5 v r l = 50 k ? c l = 100 pf a v = ? 1 t a = 25 c figure 46 inverting small-signal pulse response t ? time ? s vo ? output voltage ? mv v o 0 0102030 0.1 40 50 0.05 ?0.05 ?0.1 v dd = 5 v r l = 50 k ? c l = 100 pf a v = ? 1 t a = 25 c figure 47 voltage-follower small-signal pulse response ? vo ? output voltage ? v v o t ? time ? s 2.5 2.45 2.4 0102030 2.55 2.6 2.65 40 50 v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 t a = 25 c ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 26 post office box 655303 ? dallas, texas 75265 typical characteristics figure 48 voltage-follower small-signal pulse response vo ? output voltage ? v v o t ? time ? s 0 1020304050 v dd = 5 v r l = 50 k ? c l = 100 pf a v = 1 t a = 25 c ?0.1 ?0.05 0 0.05 0.1 figure 49 vn ? equivalent input noise voltage ? nv//hz f ? frequency ? hz equivalent input noise voltage ? vs frequency nv/ hz v n 40 20 10 0 60 30 50 10 1 10 2 10 3 10 4 v dd = 5 v r s = 20 ? t a = 25 c figure 50 equivalent input noise voltage vs frequency f ? frequency ? hz vn ? equivalent input noise voltage ? nv//hz nv/ hz v n 40 20 10 0 60 30 50 10 1 10 2 10 3 10 4 v dd = 5 v r s = 20 ? t a = 25 c figure 51 noise voltage ? nv t ? time ? s equivalent input noise voltage over a 10-second period ? 0246 0 750 1000 810 500 ?250 ?500 ?750 ?1000 250 v dd = 5 v f = 0.1 hz to 10 hz t a = 25 c ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 27 post office box 655303 ? dallas, texas 75265 typical characteristics figure 52 0.1 integrated noise voltage ? f ? frequency ? hz integrated noise voltage vs frequency 1 10 100 110 1 10 2 10 3 10 4 10 5 calculated using ideal pass-band filter low frequency = 1 hz t a = 25 c v figure 53 thd + n ? total harmonic distortion plus noise ? % f ? frequency ? hz total harmonic distortion plus noise ? vs frequency 0.01 1 0.001 10 1 10 2 10 3 10 4 10 5 a v = 10 a v = 1 v dd = 5 v r l = 50 k ? t a = 25 c 0.1 a v = 100 figure 54 gain-bandwidth product ? khz gain-bandwidth product ?? vs free-air temperature t a ? free-air temperature ? c 200 120 80 240 280 ?75 ?25 0 25 50 75 100 125 v dd = 5 v f = 10 khz r l = 50 k ? c l = 100 pf ?50 160 figure 55 gain-bandwidth product ? khz gain-bandwidth product vs supply voltage | v dd | ? supply voltage ? v 210 190 170 150 023 5 230 250 78 146 t a = 25 c ? data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various dev ices. ? for curves where v dd = 5 v, all loads are referenced to 2.5 v.
? sgls188a ? october 2003 ? revised february 2004 28 post office box 655303 ? dallas, texas 75265 typical characteristics figure 56 om ? phase margin phase margin vs load capacitance c l ? load capacitance ? pf m 10 1 10 2 10 3 10 5 75 60 45 30 15 0 r null = 200 ? r null = 500 ? r null = 50 ? r null = 0 t a = 25 c r null = 10 ? 10 4 50 k ? 50 k ? v dd ? v dd + r null c l v i + ? r null = 100 ? figure 57 gain margin ? db gain margin vs load capacitance c l ? load capacitance ? pf 20 10 5 0 15 10 1 10 2 10 3 10 5 r null = 100 ? t a = 25 c r null = 50 ? 10 4 r null = 500 ? r null = 200 ? r null = 0 r null = 10 ? figure 58 ? unity-gain bandwidth ? khz unity-gain bandwidth ? vs load capacitance c l ? load capacitance ? pf c figure 59 overestimation of phase margin overestimation of phase margin ? vs load capacitance c l ? load capacitance ? pf 15 10 5 0 20 25 10 1 10 2 10 3 10 4 10 5 t a = 25 c r null = 100 ? r null = 50 ? r null = 10 ? r null = 500 ? r null = 200 ? ? see application information
? sgls188a ? october 2003 ? revised february 2004 29 post office box 655303 ? dallas, texas 75265 application information driving large capacitive loads the tlc225x is designed to drive larger capacitive loads than most cmos operational amplifiers. figure 56 and figure 57 illustrate its ability to drive loads up to 1000 pf while maintaining good gain and phase margins (r null = 0). a smaller series resistor (r null ) at the output of the device (see figure 60) improves the gain and phase margins when driving large capacitive loads. figure 56 and figure 57 show the effects of adding series resistances of 10 ? , 50 ? , 100 ? , 200 ? , and 500 ? . the addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function. the zero introduced to the transfer function is equal to the series resistance times the load capacitance. to calculate the improvement in phase margin, equation 1 can be used. ? m1  tan ?1  2 ugb w r null c l  where : (1) ? m1  improvement in phase margin ugbw  unity-gain bandwidth frequency r null  output series resistance c l  load capacitance the unity-gain bandwidth (ugbw) frequency decreases as the capacitive load increases (see figure 58). to use equation 1, ugbw must be approximated from figure 58. using equation 1 alone overestimates the improvement in phase margin, as illustrated in figure 59. the overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing additional phase shift and reducing the overall improvement in phase margin. using figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitance loads. 50 k ? 50 k ? v dd ?/ gnd v dd + r null c l v i + ? figure 60. series-resistance circuit
? sgls188a ? october 2003 ? revised february 2004 30 post office box 655303 ? dallas, texas 75265 application information macromodel information macromodel information provided was derived using microsim parts ? , the model generation software used with microsim pspice ? . the boyle macromodel (see note 5) and subcircuit in figure 61 are generated using the tlc225x typical electrical and operating characteristics at t a = 25 c. using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  maximum positive output voltage swing  maximum negative output voltage swing  slew rate  quiescent power dissipation  input bias current  open-loop voltage amplification  unity-gain frequency  common-mode rejection ratio  phase margin  dc output resistance  ac output resistance  short-circuit output current limit note 4: g. r. boyle, b. m. cohn, d. o. pederson, and j. e. solomon, ?macromodeling of integrated circuit operational amplifiers?, ieee journal of solid-state circuits, sc-9, 353 (1974). out + ? + ? + ? + ? + ? + ? + ? + ? + ? .subckt tlc225x 1 2 3 4 5 c1 11 12 6.369e?12 c2 6 7 25.00e?12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly (2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly (5) vb vc ve vlp + vln 0 57.62e6 ?60e6 60e6 60e6 ?60e6 ga 6 0 11 12 26.86e?6 gcm 0 6 10 99 2.686e?9 iss 3 10 dc 3.1e?6 hlim 90 0 vlim 1k j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0e3 rd1 60 11 37.23e3 rd2 60 12 37.23e3 r01 8 5 84 r02 7 99 84 rp 3 4 71.43e3 rss 10 99 64.52e6 vad 60 4 ?.5 vb 9 0 dc 0 vc 3 53 dc .605 ve 54 4 dc .605 vlim 7 8 dc 0 vlp 91 0 dc ?.235 vln 0 92 dc 7.5 .model dx d (is=800.0e?18) .model jx pjf (is=500.0e?15 beta=139e?6 + vto=?.05) .ends v cc + rp in ? 2 in + 1 v cc ? vad rd1 11 j1 j2 10 rss iss 3 12 rd2 60 ve 54 de dp vc dc 4 c1 53 r2 6 9 egnd vb fb c2 gcm ga vlim 8 5 ro1 ro2 hlim 90 dlp 91 dln 92 vln vlp 99 7 figure 61. boyle macromodel and subcircuit pspice and parts are trademarks of microsim corporation.
packaging information orderable device status (1) package type package drawing pins package qty eco plan (2) lead/ball finish msl peak temp (3) tlc2252aqdrq1 active soic d 8 2500 pb-free (rohs) cu nipdau level-2-250c-1 year/ level-1-235c-unlim tlc2252aqpwrq1 active tssop pw 8 2000 none cu nipdau level-1-250c-unlim tlc2252qdrq1 active soic d 8 2500 pb-free (rohs) cu nipdau level-2-250c-1 year/ level-1-235c-unlim tlc2252qpwrq1 active tssop pw 8 2000 none cu nipdau level-1-220c-unlim tlc2254aqdrq1 active soic d 14 2500 pb-free (rohs) cu nipdau level-2-250c-1 year/ level-1-235c-unlim tlc2254aqpwrq1 active tssop pw 14 2000 none cu nipdau level-1-250c-unlim tlc2254qdrq1 active soic d 14 2500 pb-free (rohs) cu nipdau level-2-250c-1 year/ level-1-235c-unlim tlc2254qpwrq1 active tssop pw 14 2000 none cu nipdau level-1-250c-unlim (1) the marketing status values are defined as follows: active: product device recommended for new designs. lifebuy: ti has announced that the device will be discontinued, and a lifetime-buy period is in effect. nrnd: not recommended for new designs. device is in production to support existing customers, but ti does not recommend using this part in a new design. preview: device has been announced but is not in production. samples may or may not be available. obsolete: ti has discontinued the production of the device. (2) eco plan - may not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. none: not yet available lead (pb-free). pb-free (rohs): ti's terms "lead-free" or "pb-free" mean semiconductor products that are compatible with the current rohs requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. where designed to be soldered at high temperatures, ti pb-free products are suitable for use in specified lead-free processes. green (rohs & no sb/br): ti defines "green" to mean "pb-free" and in addition, uses package materials that do not contain halogens, including bromine (br) or antimony (sb) above 0.1% of total product weight. (3) msl, peak temp. -- the moisture sensitivity level rating according to the jedecindustry standard classifications, and peak solder temperature. important information and disclaimer: the information provided on this page represents ti's knowledge and belief as of the date that it is provided. ti bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. efforts are underway to better integrate information from third parties. ti has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ti and ti suppliers consider certain information to be proprietary, and thus cas numbers and other limited information may not be available for release. in no event shall ti's liability arising out of such information exceed the total purchase price of the ti part(s) at issue in this document sold by ti to customer on an annual basis. package option addendum www.ti.com 25-feb-2005 addendum-page 1


mechanical data mtss001c january 1995 revised february 1999 post office box 655303 ? dallas, texas 75265 pw (r-pdso-g**) plastic small-outline package 14 pins shown 0,65 m 0,10 0,10 0,25 0,50 0,75 0,15 nom gage plane 28 9,80 9,60 24 7,90 7,70 20 16 6,60 6,40 4040064/f 01/97 0,30 6,60 6,20 8 0,19 4,30 4,50 7 0,15 14 a 1 1,20 max 14 5,10 4,90 8 3,10 2,90 a max a min dim pins ** 0,05 4,90 5,10 seating plane 0 8 notes: a. all linear dimensions are in millimeters. b. this drawing is subject to change without notice. c. body dimensions do not include mold flash or protrusion not to exceed 0,15. d. falls within jedec mo-153
important notice texas instruments incorporated and its subsidiaries (ti) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. all products are sold subject to ti?s terms and conditions of sale supplied at the time of order acknowledgment. ti warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with ti?s standard warranty. testing and other quality control techniques are used to the extent ti deems necessary to support this warranty. except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. ti assumes no liability for applications assistance or customer product design. customers are responsible for their products and applications using ti components. to minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. ti does not warrant or represent that any license, either express or implied, is granted under any ti patent right, copyright, mask work right, or other ti intellectual property right relating to any combination, machine, or process in which ti products or services are used. information published by ti regarding third-party products or services does not constitute a license from ti to use such products or services or a warranty or endorsement thereof. use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from ti under the patents or other intellectual property of ti. reproduction of information in ti data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. reproduction of this information with alteration is an unfair and deceptive business practice. ti is not responsible or liable for such altered documentation. resale of ti products or services with statements different from or beyond the parameters stated by ti for that product or service voids all express and any implied warranties for the associated ti product or service and is an unfair and deceptive business practice. ti is not responsible or liable for any such statements. following are urls where you can obtain information on other texas instruments products and application solutions: products applications amplifiers amplifier.ti.com audio www.ti.com/audio data converters dataconverter.ti.com automotive www.ti.com/automotive dsp dsp.ti.com broadband www.ti.com/broadband interface interface.ti.com digital control www.ti.com/digitalcontrol logic logic.ti.com military www.ti.com/military power mgmt power.ti.com optical networking www.ti.com/opticalnetwork microcontrollers microcontroller.ti.com security www.ti.com/security telephony www.ti.com/telephony video & imaging www.ti.com/video wireless www.ti.com/wireless mailing address: texas instruments post office box 655303 dallas, texas 75265 copyright ? 2005, texas instruments incorporated


▲Up To Search▲   

 
Price & Availability of TLC225X-Q1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X